Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
AIDS Patient Care STDS ; 38(4): 177-184, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656214

ABSTRACT

The introduction of injectable HIV pre-exposure prophylaxis (PrEP) has the potential to significantly change the biomedical HIV prevention landscape. However, effective implementation will require health care providers to adopt, prescribe, and administer injectable PrEP within clinical settings. This study qualitatively examined challenges and benefit of injectable PrEP implementation from the perspective of health care providers. From April to August 2022, we conducted 19 in-depth interviews with current PrEP-prescribing health care providers in New York State, including 3 physician assistants, 5 physicians, and 11 nurse practitioners. Interviews were audio-recorded, transcribed verbatim, and thematically analyzed to report semantic-level themes regarding injectable PrEP implementation. More than half of participants (61%) were aware of injectable PrEP; only 21% had experience prescribing it. Qualitative findings highlighted five themes. Three themes represented implementation challenges, including speculative concerns about side effects, appointment compliance, and practical and logistical considerations. The remaining two themes described benefits of injectable PrEP relative to oral PrEP, which included greater convenience and enhanced privacy. Findings from this qualitative study make significant applied contributions to the sparse knowledge on health care provider perspectives of injectable PrEP post-US Food and Drug Administration approval and their concerns and considerations regarding implementation in real-world clinical settings.


Subject(s)
Anti-HIV Agents , HIV Infections , Health Personnel , Injections , Interviews as Topic , Pre-Exposure Prophylaxis , Qualitative Research , Humans , Pre-Exposure Prophylaxis/methods , HIV Infections/prevention & control , Health Personnel/psychology , Anti-HIV Agents/administration & dosage , Female , Male , United States , Adult , Attitude of Health Personnel , Middle Aged , New York
2.
AIDS Care ; : 1-10, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289486

ABSTRACT

Ending the HIV epidemic in the United States will require addressing social determinants contributing to poor care engagement among people living with HIV (PLH), such as food insecurity. Food insecurity is associated with poor care engagement among PLH. Yet, few studies have examined the perspectives of healthcare and social services providers on addressing food insecurity in HIV care. Guided by the Social Ecological Model, we conducted semi-structured interviews with 18 providers in New York State to understand barriers and facilitators to addressing food insecurity in HIV care. Thematic analysis illustrated eight themes across various levels of the Social Ecological Model. At the patient-level, providers perceived patients' feelings of embarrassment, shame, and judgement, and low health literacy as barriers. At the provider-level, challenges included limited time. Facilitators included fostering strong, patient-provider relationships. Barriers at the clinic-level included limited funding, while clinic resources served as facilitators. At the community-level, challenges included intersecting stigmas arising from community norms towards PLH and people who receive food assistance and limited access to healthy food. Findings suggest the need to incorporate their insights into the development of interventions that address food insecurity in HIV care.

3.
Sci Rep ; 13(1): 14470, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660227

ABSTRACT

Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.


Subject(s)
RNA , Reverse Transcription , Biological Assay , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction
4.
iScience ; 25(7): 104554, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800774

ABSTRACT

Plasma cell-free DNA is being widely explored as a biomarker for clinical screening. Currently, methods are optimized for the extraction and detection of double-stranded mononucleosomal cell-free DNA of ∼160bp in length. We introduce uscfDNA-seq, a single-stranded cell-free DNA next-generation sequencing pipeline, which bypasses previous limitations to reveal a population of ultrashort single-stranded cell-free DNA in human plasma. This species has a modal size of 50nt and is distinctly separate from mononucleosomal cell-free DNA. Treatment with single-stranded and double-stranded specific nucleases suggests that ultrashort cell-free DNA is primarily single-stranded. It is distributed evenly across chromosomes and has a similar distribution profile over functional elements as the genome, albeit with an enrichment over promoters, exons, and introns, which may be suggestive of a terminal state of genome degradation. The examination of this cfDNA species could reveal new features of cell death pathways or it can be used for cell-free DNA biomarker discovery.

5.
Article in English | MEDLINE | ID: mdl-34250423

ABSTRACT

We report the results from a Foundation for the National Institutes of Health Biomarkers Consortium project to address the absence of well-validated quality control materials (QCMs) for circulating tumor DNA (ctDNA) testing. This absence is considered a cause of variance and inconsistencies in translating ctDNA results into clinical actions. METHODS: In this phase I study, QCMs with 14 clinically relevant mutations representing single nucleotide variants, insertions or deletions (indels), translocations, and copy number variants were sourced from three commercial manufacturers with variant allele frequencies (VAFs) of 5%, 2.5%, 1%, 0.1%, and 0%. Four laboratories tested samples in quadruplicate using two allele-specific droplet digital polymerase chain reaction and three (amplicon and hybrid capture) next-generation sequencing (NGS) panels. RESULTS: The two droplet digital polymerase chain reaction assays reported VAF values very close to the manufacturers' claimed concentrations for all QCMs. NGS assays reported most single nucleotide variants and indels, but not translocations, close to the expected VAF values. Notably, two NGS assays reported lower VAF than expected for all translocations in all QCM mixtures, possibly related to technical challenges detecting these variants. The ability to call ERBB2 copy number amplifications varied across assays. All three QCMs provided valuable insight into assay precision. Each assay across all variant types demonstrated dropouts at 0.1%, suggesting that the QCM can serve for testing of an assay's limit of detection with confidence claims for specific variants. CONCLUSION: These results support the utility of the QCM in testing ctDNA assay analytical performance. However, unique designs and manufacturing methods for the QCM, and variations in a laboratory's testing configuration, may require testing of multiple QCMs to find the best reagents for accurate result interpretation.


Subject(s)
Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Polymerase Chain Reaction , Quality Control , Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , DNA Copy Number Variations , Gene Frequency , Humans , Mutation/genetics , National Institutes of Health (U.S.) , Neoplasms/blood , United States
6.
Sci Rep ; 11(1): 389, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431989

ABSTRACT

Lentiviral vectors (LV) have emerged as a robust technology for therapeutic gene delivery into human cells as advanced medicinal products. As these products are increasingly commercialized, there are concomitant demands for their characterization to ensure safety, efficacy and consistency. Standards are essential for accurately measuring parameters for such product characterization. A critical parameter is the vector copy number (VCN) which measures the genetic dose of a transgene present in gene-modified cells. Here we describe a set of clonal Jurkat cell lines with defined copy numbers of a reference lentiviral vector integrated into their genomes. Genomic DNA was characterized for copy number, genomic integrity and integration coordinates and showed uniform performance across independent quantitative PCR assays. Stability studies during continuous long-term culture demonstrated sustained renewability of the reference standard source material. DNA from the Jurkat VCN standards would be useful for control of quantitative PCR assays for VCN determination in LV gene-modified cellular products and clinical samples.


Subject(s)
Gene Dosage , Lentivirus/genetics , Transduction, Genetic , Calibration/standards , Gene Transfer Techniques/standards , Genetic Vectors/genetics , Humans , Jurkat Cells , Mutagenesis, Insertional/genetics , Reference Standards , Reproducibility of Results , Transduction, Genetic/methods , Transduction, Genetic/standards , Transfection/methods , Transfection/standards , Validation Studies as Topic , Virus Integration/genetics
7.
J Mol Diagn ; 21(4): 658-676, 2019 07.
Article in English | MEDLINE | ID: mdl-31055023

ABSTRACT

We conducted a multilaboratory assessment to determine the suitability of a new commercially available reference material with 40 cancer variants in a background of wild-type DNA at four different variant allele frequencies (VAFs): 2%, 0.50%, 0.125%, and 0%. The variants include single nucleotides, insertions, deletions, and two structural variations selected for their clinical importance and to challenge the performance of next-generation sequencing (NGS) methods. Fragmented DNA was formulated to simulate the size distribution of circulating wild-type and tumor DNA in a synthetic plasma matrix. DNA was extracted from these samples and characterized with different methods and multiple laboratories. The various extraction methods had differences in yield, perhaps because of differences in chemistry. Digital PCR assays were used to measure VAFs to compare results from different NGS methods. Comparable VAFs were observed across the different NGS methods. This multilaboratory assessment demonstrates that the new reference material is an appropriate tool to determine the analytical parameters of different measurement methods and to ensure their quality assurance.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , DNA, Neoplasm , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/genetics , Alleles , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Liquid Biopsy/methods , Liquid Biopsy/standards , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Quality Assurance, Health Care , Reference Standards
8.
Clin Chem Lab Med ; 57(8): 1142-1152, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31112502

ABSTRACT

Background The National Institute of Standards and Technology (NIST) Reference Material RM 8366 was developed to improve the quality of gene copy measurements of EGFR (epidermal growth factor receptor) and MET (proto-oncogene, receptor tyrosine kinase), important targets for cancer diagnostics and treatment. The reference material is composed of genomic DNA prepared from six human cancer cell lines with different levels of amplification of the target genes. Methods The reference values for the ratios of the EGFR and MET gene copy numbers to the copy numbers of reference genes were measured using digital PCR. The digital PCR measurements were confirmed by two additional laboratories. The samples were also characterized using Next Generation Sequencing (NGS) methods including whole genome sequencing (WGS) at three levels of coverage (approximately 1 ×, 5 × and greater than 30 ×), whole exome sequencing (WES), and two different pan-cancer gene panels. The WES data were analyzed using three different bioinformatic algorithms. Results The certified values (digital PCR) for EGFR and MET were in good agreement (within 20%) with the values obtained from the different NGS methods and algorithms for five of the six components; one component had lower NGS values. Conclusions This study shows that NIST RM 8366 is a valuable reference material to evaluate the performance of assays that assess EGFR and MET gene copy number measurements.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Proto-Oncogene Proteins c-met/genetics , DNA, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/standards , Gene Dosage , Humans , Polymerase Chain Reaction , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/standards , Reference Standards , Tumor Cells, Cultured
9.
Virus Evol ; 4(1): vey014, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29977605

ABSTRACT

The long-term evolutionary history of many viral lineages is poorly understood. Novel sources of ancient DNA combined with phylogenetic analyses can provide insight into the time scale of virus evolution. Here we report viral sequences from ancient North American packrat middens. We screened samples up to 27,000-years old and found evidence of papillomavirus (PV) infection in Neotoma cinerea (Bushy-tailed packrat). Phylogenetic analysis placed the PV sequences in a clade with other previously published PV sequences isolated from rodents. Concordance between the host and virus tree topologies along with a correlation in branch lengths suggests a shared evolutionary history between rodents and PVs. Based on host divergence times, PVs have likely been circulating in rodents for at least 17 million years. These results have implications for our understanding of PV evolution and for further research with ancient DNA from Neotoma middens.

10.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Article in English | MEDLINE | ID: mdl-29903874

ABSTRACT

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Subject(s)
Polymerase Chain Reaction/methods , Precision Medicine , DNA Copy Number Variations , Humans , Mass Spectrometry , Reproducibility of Results
11.
Biotechniques ; 64(2): 59-68, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29571283

ABSTRACT

We compared different methods (absorbance, fluorescent dye-binding, and digital PCR) for measuring the concentrations of human genomic DNA from cultured cells and absorbance measurements of a synthetic DNA oligonucleotide. NIST Standard Reference Material (SRM) 2082, a pathlength absorbance standard, was used to benchmark the absorbance measurements done with microvolume spectrophotometers and a microvolume plate reader. Control absorbance values were measured on a high accuracy spectrophotometer and a NIST calibrated pathlength cuvette. Measurements of the human genomic DNA sample were done with several types of fluorescent dye binding assays using different DNA calibrators. The fluorescent dye binding methods gave different results for genomic DNA depending upon the type of DNA calibrator and the fluorescent dye that was used. The human genomic DNA sample was also characterized by using six different droplet digital PCR assays (amplicons located on different chromosomes) to measure the average copy number. Conversion of the digital PCR data to copy numbers was sensitive to the droplet size used for calculations and conversion to mass concentration was dependent upon the molecular weight of the human genome used for the calculations. The results from the different methods were compared and the caveats for each measurement method were discussed.


Subject(s)
DNA/analysis , Oligonucleotides/analysis , Fluorometry , Humans , Polymerase Chain Reaction , Spectrophotometry
12.
Biopharm Int ; 31(4): 22-34, 2018.
Article in English | MEDLINE | ID: mdl-30996711

ABSTRACT

Ultraviolet (UV) absorbance measurements provide a rapid and reliable method to determine protein concentrations. the National Institute of standards and technology (NIST) has developed Standard Reference Material (SRM) 2082 as a pathlength standard for UV absorbance measurements for use with the new generation of microvolume spectrophotometers and short-pathlength cuvettes. short pathlengths are used with high-concentration targets to ensure that absorbance values are within the optimal range. the short-pathlength instruments and cuvettes also reduce the required volumes to conserve valuable samples. the authors compared the results obtained with high-quality dual-beam spectrophotometers and short-pathlength cuvettes to the results obtained from a microvolume spectrophotometer and a microvolume plate reader. SRM 2082 can be used to accurately calculate pathlength values, thereby increasing the accuracy in subsequent measurements using the short-pathlength cuvettes and microvolume absorbance instruments. RM 8671 (reference material, the NISTmAb) can then be used to ensure the accuracy and reproducibility of protein concentration measurements by providing an industrially relevant reference material, a well-characterized monoclonal antibody.

13.
PLoS One ; 12(11): e0188085, 2017.
Article in English | MEDLINE | ID: mdl-29145448

ABSTRACT

Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.


Subject(s)
MicroRNAs/analysis , Real-Time Polymerase Chain Reaction/methods , Cell Line , DNA, Complementary/biosynthesis , Humans , Temperature
14.
Biotechnol Prog ; 33(3): 677-686, 2017 May.
Article in English | MEDLINE | ID: mdl-28371560

ABSTRACT

Differential scanning calorimetry (DSC) and differential scanning fluorimetry (DSF) were used to measure the transition temperatures of four proteins: RNase A, invertase, rituximab, and the NISTmAb (NIST Reference Material, RM 8671). The proteins were combined with several different fluorescent dyes for the DSF measurements. This study compares the results of DSC and DSF measurements of transition temperatures with different types of proteins, dye combinations, and thermal scan rates. As protein unfolding is often influenced by kinetic effects, we measured the transition temperatures of the proteins using DSC over a range of temperature scan rates and compared them to the data obtained from DSF over comparable temperature scan rates. The results when the proteins were combined with Sypro Orange® and bis-ANS for the DSF measurements had the best correlations with the transition temperatures determined by calorimetry. The scan rate was found to be an important variable when comparing results between DSC and DSF. The van't Hoff enthalpy changes for the transitions were calculated from the DSC data by using a non-two-state model and from the DSF values using a two-state model. The calculated van't Hoff enthalpy changes did not show a good correlation between the two methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:677-686, 2017.


Subject(s)
Antibodies, Monoclonal/chemistry , Calorimetry, Differential Scanning/methods , Fluorometry/methods , Protein Unfolding , Thermodynamics , Transition Temperature , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/metabolism
15.
Article in English | MEDLINE | ID: mdl-34877099

ABSTRACT

New spectrophotometers and cuvettes have been designed to allow the measurement of absorbance values from samples using microliter volume sizes. These measurements are done using short pathlengths to decrease the sample volumes required. The major applications for these spectrophotometers and cuvettes are samples that are difficult to obtain in large amounts, such as proteins and nucleic acids that absorb light in the ultraviolet range. Existing ultraviolet absorbance standards have been designed for longer pathlength measurements. Standard Reference Material (SRM) 2082 was developed to validate the pathlengths of short-pathlength cuvettes and instruments using materials with absorbance spectra that are similar to the most commonly used samples. SRM 2082 consists of three individual components: a blank buffer solution, a solution of the amino acid tryptophan in the buffer, and a solution of the nucleobase uracil in the buffer. The tryptophan solution has an absorbance spectrum (peak at 280 nm) similar to proteins, and the uracil has an absorbance spectrum (peak at 260 nm) similar to nucleic acids. The absorbance values of these solutions were determined using a series of cuvettes with pathlengths from 0.1 mm to 2 mm. The pathlengths of the cuvettes used for the absorbance measurements were determined at the National Institute of Standards and Technology by physical and optical measurements. The effects of temperature and spectral bandwidth variations on the absorbance values of SRM 2082 were also investigated.

16.
J Mol Diagn ; 18(5): 753-761, 2016 09.
Article in English | MEDLINE | ID: mdl-27455875

ABSTRACT

The National Institute of Standards and Technology (NIST) Standard Reference Materials 2373 is a set of genomic DNA samples prepared from five breast cancer cell lines with certified values for the ratio of the HER2 gene copy number to the copy numbers of reference genes determined by real-time quantitative PCR and digital PCR. Targeted-amplicon, whole-exome, and whole-genome sequencing measurements were used with the reference material to compare the performance of both the laboratory steps and the bioinformatic approaches of the different methods using a range of amplification ratios. Although good reproducibility was observed in each next-generation sequencing method, slightly different HER2 copy numbers associated with platform-specific biases were obtained. This study clearly demonstrates the value of Standard Reference Materials 2373 as reference material and as a calibrator for evaluating assay performance as well as for increasing confidence in reporting HER2 amplification for clinical applications.


Subject(s)
Gene Amplification , High-Throughput Nucleotide Sequencing , Receptor, ErbB-2/genetics , Reference Standards , Cell Line, Tumor , Exome , Female , Gene Dosage , Genome, Human , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Neoplasms/diagnosis , Neoplasms/genetics , Real-Time Polymerase Chain Reaction
17.
Biomol Detect Quantif ; 8: 1-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27335805

ABSTRACT

NIST standard reference material (SRM) 2373 was developed to improve the measurements of the HER2 gene amplification in DNA samples. SRM 2373 consists of genomic DNA extracted from five breast cancer cell lines with different amounts of amplification of the HER2 gene. The five components are derived from the human cell lines SK-BR-3, MDA-MB-231, MDA-MB-361, MDA-MB-453, and BT-474. The certified values are the ratios of the HER2 gene copy numbers to the copy numbers of selected reference genes DCK, EIF5B, RPS27A, and PMM1. The ratios were measured using quantitative polymerase chain reaction and digital PCR, methods that gave similar ratios. The five components of SRM 2373 have certified HER2 amplification ratios that range from 1.3 to 17.7. The stability and homogeneity of the reference materials were shown by repeated measurements over a period of several years. SRM 2373 is a well characterized genomic DNA reference material that can be used to improve the confidence of the measurements of HER2 gene copy number.

18.
PLoS Biol ; 14(6): e1002476, 2016 06.
Article in English | MEDLINE | ID: mdl-27300367

ABSTRACT

Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines.


Subject(s)
Gene Expression Profiling/methods , Genotyping Techniques/methods , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Animals , Cell Line , DNA Barcoding, Taxonomic/methods , DNA Barcoding, Taxonomic/standards , Gene Expression Profiling/standards , Genotyping Techniques/standards , Humans , Reference Standards , Reproducibility of Results
19.
Biotechnol Prog ; 31(1): 62-9, 2015.
Article in English | MEDLINE | ID: mdl-25270911

ABSTRACT

We have used differential scanning calorimetry (DSC) to determine the unfolding properties of commercial products of human serum albumin (HSA) prepared from pooled human blood, transgenic yeast, and transgenic rice. The initial melting temperatures (Tm1 ) for the unfolding transitions of the HSA products varied from 62°C to 75°C. We characterized the samples for purity, fatty acid content, and molecular weight. The effects of adding fatty acids, heat pasteurization, and a low pH defatting technique on the transition temperatures were measured. Defatted HSA has a structure with the lowest stability (Tm of ∼62°C). When fatty acids are bound to HSA, the structure is stabilized (Tm of ∼64-72°C), and prolonged heating (pasteurization at 60°C) results in a heat-stabilized structural form containing fatty acids (Tm of ∼75-80°C). This process was shown to be reversible by a low pH defatting step. This study shows that the fatty acid composition and bioprocessing history of the HSA commercial products results in the large differences in the thermal stability.


Subject(s)
Protein Unfolding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Serum Albumin/chemistry , Serum Albumin/metabolism , Biotechnology , Calorimetry, Differential Scanning , Circular Dichroism , Fatty Acids/chemistry , Humans , Hydrogen-Ion Concentration , Oryza/genetics , Oryza/metabolism , Recombinant Proteins/genetics , Serum Albumin/genetics , Temperature , Thermodynamics , Yeasts/genetics , Yeasts/metabolism
20.
Cytotechnology ; 66(1): 133-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23430347

ABSTRACT

The scientific community has responded to the misidentification of human cell lines with validated methods to authenticate these cells; however, few assays are available for nonhuman cell line identification. We have developed a multiplex polymerase chain reaction assay that targets nine tetranucleotide short tandem repeat (STR) markers in the mouse genome. Unique profiles were obtained from seventy-two mouse samples that were used to determine the allele distribution for each STR marker. Correlations between allele fragment length and repeat number were determined with DNA Sanger sequencing. Genotypes for L929 and NIH3T3 cell lines were shown to be stable with increasing passage numbers as there were no significant differences in fragment length with samples of low passage when compared to high passage samples. In order to detect cell line contaminants, primers for two human STR markers were incorporated into the multiplex assay to facilitate detection of human and African green monkey DNA. This multiplex assay is the first of its kind to provide a unique STR profile for each individual mouse sample and can be used to authenticate mouse cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...